Introduction Link to heading
Given a binary tree where each path going from the root to any leaf form a valid sequence, check if a given string is a valid sequence in such binary tree.
We get the given string from the concatenation of an array of integers arr and the concatenation of all values of the nodes along a path results in a sequence in the given binary tree.
Example 1:
Input: root = [0,1,0,0,1,0,null,null,1,0,0], arr = [0,1,0,1]
Output: true
Explanation:
The path 0 -> 1 -> 0 -> 1 is a valid sequence (green color in the figure).
Other valid sequences are:
0 -> 1 -> 1 -> 0
0 -> 0 -> 0
Example 2:
Input: root = [0,1,0,0,1,0,null,null,1,0,0], arr = [0,0,1]
Output: false
Explanation: The path 0 -> 0 -> 1 does not exist, therefore it is not even a sequence.
Example 3:
Input: root = [0,1,0,0,1,0,null,null,1,0,0], arr = [0,1,1]
Output: false
Explanation: The path 0 -> 1 -> 1 is a sequence, but it is not a valid sequence.
Constraints:
1 <= arr.length <= 5000
0 <= arr[i] <= 9
Each node's value is between [0 - 9].
Solution Link to heading
Let’s do the simple recursion solution.
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isValidSequence(root *TreeNode, arr []int) bool {
if root == nil {
return len(arr) == 0
}
if len(arr) == 0 {
return false
}
if root.Val != arr[0] {
return false
}
leaf, left, right := true, false, false
if root.Left != nil {
left = isValidSequence(root.Left, arr[1:])
leaf = false
}
if root.Right != nil {
right = isValidSequence(root.Right, arr[1:])
leaf = false
}
if leaf && len(arr) == 1 {
return true
}
return left || right
}